

ENVIRONMENTAL DATA ANALYTICS: M8 – SPATIAL ANALYSIS

Catch up

Making use of office hours

- Remaining schedule
- Class project presentation & report

Questions on Time Series Analysis

Making use of office hours

Friday afternoons are the busiest! Don't wait...

Check slack; help others

- Debugging strategies:
 - Where does your code break?
 - How is your code different from class examples?
 - Restart R & clear variables
 - Package conflicts (plyr vs dplyr)

Remaining schedule

Date	Class topic
Nov 7/9	Spatial Analysis (assignment due 11/11)
Nov 14/16	Data Scraping (assignment due 11/18)
Nov 21/23	Thanksgiving
Nov 28/30	Class presentations
Dec 5/7	Reading week
Dec 12/14	Class Project (due 12/14)

Course Projects

- What is it?
 - Generate a hypothesis and test it using your data skills!
 - Apply the data analytic workflow to a question/dataset of your choosing...

- What is expected?
 - □ Group project w/2-3 people
 - See rubric on <u>website</u>:
 - Report as knitted Rmd file
 - Use of Git/GitHub

Course Projects: Presentations

Not expected to have completed your project!

- □ 5 minute presentations on your progress...
 - Title slide
 - Central question/hypothesis
 - Data used & relevant details (source, date, challenges)
 - Data exploration and wrangling
 - Data analysis and results
 - Summary and conclusions

M8.1 - Spatial Data

- Importance of Spatial Analysis in EDA
- Representing Spatial Data in R
- Simple Features & Spatial Dataframes
- Creating geometries
- Coordinate Reference Systems,
 Transformations, EPSG codes
- GeoJSON, Shapefiles, ...

Simple Features...

3188

3

5

208

3616

Simple feature geometry (sfg)

Simple feature geometry list-colum (sfc)

```
## Simple feature collection with 100 features and 6 fields
                   MULTIPOLYGON
## geometry type:
## dimension:
                   XY
                   xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## bbox:
## epsg (SRID):
                   4267
## proj4string:
                   +proj=longlat +datum=NAD27 +no defs
                   double (default; no precision model)
## precision:
## First 3 features:
     BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
##
                                                                         geom
                                           19 MULTIPOLYGON(((-81.47275543...
##
      1091
                      10
                          1364
                                           12 MULTIPOLYGON(((-81.23989105...
       487
               0
                      10
                           542
                                          260 MULTIPOLYGON(((-80.45634460...
```

6

Simple feature

Coordinate Reference Systems

https://www.nceas.ucsb.edu/sites/default/files/2020-04/OverviewCoordinateReferenceSystems.pdf

M8.2 – Spatial Analysis

- Reading spatial data into R
- Attribute joins
- Spatial aggregation
- Coordinate system transformations
- Intersecting data
- Clipping data
- Spatial Selection

Exercise 2.2.1

Read in the NC HUC-8 shapefile & filter for : ./Data/Spatial/NCHUC8.shp

View features, colored by ACRES

Exercise 2.2.2 - Challenge

Read in the NC HUC-8 shapefile & filter for SUBBASIN is "Upper Neuse"

View all HUCs in orange, Upper Neuse in purple

Exercise 3.1.1

- □ Read an online CSV file into a dataframe
 - https://raw.githubusercontent.com/ENV859/EnviroAtlasData/main/Wind Energy.csv
 - Set `HUC12` column to be a factor (colClasses)
 - Compute `HUC8` from `HUC12` (substr)
 - □ Group on `HUC8`
 - Compute sum of AvgWindEnergy for each HUC8
- □ Join to HUC8 features Wind energy by HUC 8

Exercise 3.2.1

Transform all data to UTM Zone 17

```
'``{r Transform the datasets to other coordinate reference systems}
#Convert all to UTM Zone 17 (crs = 26917)
epa_sf_utm <- st_transform(epa_pm25_sites_sf, crs = 26917)
counties_sf_utm <- state_sf_utm <- huc8_sf_utm <- huc2_utm <- **
**Transform (epa_pm25_sites_sf, crs = 26917)
**Trans
```

Exercise 3.3.1

- Select Triangle counties from all counties:
 Chatham, Durham, Orange, and Wake
- Select HUC8s that intersect the Triangle counties
- □ Intersect (clip) the HUC8 areas falling w/in Triangle

M8.3 – Spatial Data Visualization

- ggplot() + geomsf()
- mapview
- leaflet