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Learning Goals

¨ Introduction to Time Series Analysis (TSA)

¤ What is TSA?

¤ Examples

¤ TSA Components (trend, cycle, seasonal, random)

¨ Autocorrelation Function (ACF)

¨ Partial Autocorrelation Function (PACF)

¨ Trend and Seasonal Component

¨ Stationarity Tests



Meaning and definitions
Importance of TSA
Components of TSA

Introduction to Time Series Analysis



What is a Time Series?

¨ A set of observations on a variable collected over 
time

¨ Discrete and continuous time series 
¨ Example: stock prices, interest rate, retail sales, 

electric power consumption, etc
¨ Mathematically representation: a time series is 

defined by the values 𝑌!, 𝑌", … of a variable 𝑌 at 
times 𝑡!, 𝑡", …
Thus,

𝑌 = 𝐹(𝑡)



What is Time Series Analysis (TSA)?

¨ In TSA, we analyze the past behavior of a 
variable in order to predict its future behavior

¨ Causes of variation of Time Series Data
¤ Seasons, holidays, etc
¤ Natural calamities: earthquake, epidemic, flood, 

drought, etc
¤ Political movements or changes, war, etc



Example of Time Series Data

Percent renewables in Germany’s electricity mix versus total greenhouse gas 
emissions, 1990-2015



Example of Time Series Data

Energy consumption time-series for meter ID 1038. 
Notice the day/night rhythm.

Source: https://dzone.com/articles/data-chef-etl-battles-energy-consumption-time-seri



Importance of TSA

¨ Very popular tool for business forecasting
¨ Basis for understanding past behavior

¨ Can forecast future activities/planning for future 
operations



Components of TSA

¨ Time frame: short, medium and long-term
¤ How far can we predict?

¨ Trend
¤ General tendency to grow or decline over a long period
¤ Easiest to detect
¤ Maybe linear or non-linear

¨ Cycle
¤ An up and down repetitive movement
¤ Repeat itself over a long period of time
¤ Example: business cycle (prosperity, decline, depressions, 

recovery)



Components of TSA (cont’d)

¨ Seasonal Variation
¤ An up and down repetitive movement occurring 

periodically (short duration)
¤ Factor that cause seasonal variations: climate and weather 

condition or custom traditions and habits

Source: Brockwell and 
Davis, Introduction to Time 
Series and Forecasting

Australian Red 
Wine Sales



Components of TSA (cont’d)

¨ Random Variations
¤ Erratic movements that are not predictable because 

they don’t follow a pattern
¤ Example: strike, fire, war, flood, earthquake, etc..

Source: Brockwell and Davis, 
Introduction to Time Series 
and Forecasting



TSA Terms

¨ Stationary Data - a time series variable 
exhibiting no significant upward or downward 
trend over time

¨ Nonstationary Data - a time series variable 
exhibiting a significant upward or downward 
trend over time

¨ Seasonal Data - a time series variable 
exhibiting a repeating patterns at regular 
intervals over time



Autocorrelation Function



Meaning of Autocorrelation Function

¨ Recap: What is correlation?

From stats: covariance and correlation measure joint 
variability of two variables.



Meaning of Autocorrelation Function

¨ Recap: What is correlation?
Is a measure of linear dependence between two 

variables

¨ In TSA: What is autocorrelation?
Is a measure of dependence between two adjacent 

values of the same variables

¨ The prefix auto is to convey the notion of self-
correlation, that is, correlation between variables 
from the same time series 



How to compute autocorrelation?

¨ In the context of a single variable, 𝑌# is the original 
series and 𝑌$ is a lagged version of the series

𝑌! 𝑌" 𝑌#
𝑌" 𝑌# 𝑌$
𝑌# 𝑌$ 𝑌%
𝑌$ 𝑌% 𝑌&
⋮ ⋮ ⋮

𝑌'(# 𝑌'(" 𝑌'(!
𝑌'(" 𝑌'(! 𝑌'
𝑌'(! 𝑌'
𝑌'

𝑌) 𝑌* 𝑌*

Compute lag 1 autocorrelation

𝜌),* = 𝐶𝑜𝑟𝑟 𝑌) , 𝑌*



How to compute autocorrelation?

¨ In the context of a single variable, 𝑌# is the original 
series and 𝑌$ is a lagged version of the series

𝑌! 𝑌" 𝑌#
𝑌" 𝑌# 𝑌$
𝑌# 𝑌$ 𝑌%
𝑌$ 𝑌% 𝑌&
⋮ ⋮ ⋮

𝑌'(# 𝑌'(" 𝑌'(!
𝑌'(" 𝑌'(! 𝑌'
𝑌'(! 𝑌'
𝑌'

𝑌) 𝑌* 𝑌*

Compute lag 2 autocorrelation

𝜌),* = 𝐶𝑜𝑟𝑟 𝑌) , 𝑌*



Main Conclusion

Autocovariance and autocorrelation 
function give information about the 

dependence structure of a time series



Stationary Process



Stationary Process

¨ The basic idea of stationarity is that the probability 
laws that govern the behavior of the process do not 
change over time 

Time

The distribution of 
observations at these points

The distribution of 
observations at these points

=



Consequences of Stationarity

¨ Distribution of 𝑌# is the same of 𝑌# % & for all 𝑡 and 𝑘
¨ Then,

¤ 𝐸(𝑌!) = 𝐸(𝑌! " #) for all 𝑡 and 𝑘 so the mean function 
is constant for all time 

¤ 𝑉𝑎𝑟(𝑌!) = 𝑉𝑎𝑟(𝑌! " #) for all 𝑡 and 𝑘 so the variance 
is also constant over time 

¨ And what happens with the autocovariance function?

*adapted from Ch. 2 of Cryer and Shan



Consequences of Stationarity (cont’d)

¨ If the process is stationary, then

¨ In other words, the covariance between 𝑌! and 𝑌"
depends only on the time difference |t − s| and not on 
the actual times t and s 

*adapted from Ch. 2 of Cryer and Shan

𝛾),* = 𝐶𝑜𝑣 𝑌), 𝑌* = 𝐶𝑜𝑣 𝑌)+,, 𝑌*+,

For 𝑘 = 𝑠 → 𝐶𝑜𝑣 𝑌), 𝑌* = 𝐶𝑜𝑣 𝑌)+*, 𝑌-

For 𝑘 = 𝑡 → 𝐶𝑜𝑣 𝑌), 𝑌* = 𝐶𝑜𝑣 𝑌-, 𝑌*+)

Thus,                  𝛾),* = 𝐶𝑜𝑣 𝑌-, 𝑌)+* = 𝛾-, )+*



White Noise Series

¨ Example of a stationary process: white noise series 
¨ The white noise series is a sequence of independent, 

identically distributed (i.i.d.) random variables {𝑒!}
¨ {𝑒!} is a stationary process, then

𝜇) = E(e))

𝛾, = 1𝑉𝑎𝑟 𝑒) 𝑓𝑜𝑟 𝑘 = 0
0 𝑓𝑜𝑟 𝑘 ≠ 0

𝜌, = 11 𝑓𝑜𝑟 𝑘 = 0
0 𝑓𝑜𝑟 𝑘 ≠ 0

¨ In time series modeling we usually assume that the white 
noise process has mean zero and 𝑉𝑎𝑟 𝑒! = 𝜎#$

*adapted from Ch. 2 of Cryer and Shan



Partial Autocorrelation Function



Partial Autocorrelation Function

Recap: The ACF of a stationary process 𝑌# at lag ℎ
𝜌#,#%( = 𝐶𝑜𝑟𝑟(𝑌# , 𝑌#%()

measures the linear dependency among the process 
variables 𝑌# and 𝑌#%(.

But the dependency structure among the intermediate 
variables

𝑌# , 𝑌#%!, 𝑌#%", ⋯𝑌#%()", 𝑌#%()!, 𝑌#%(
also plays an important role on the value of the ACF.



Partial Autocorrelation Function (cont’d)

Imagine if you could remove the influence 
of all these intermediate variables…

You would have only the directly correlation 
between 𝑌# and 𝑌#%(

That’s the so called partial autocorrelation function 
(PACF)



Partial Autocorrelation Function (cont’d)

¨ The PACF is a little more difficult to compute
¨ We will talk about that later when we discuss the 

Yule Walker equations
¨ In summary:

¤ The ACF and PACF measure the temporal dependency 
of a stochastic process

¤ You will always build the ACF and PACF before fitting a 
model to a stochastic process

¤ The ACF and PACF give us information about the auto-
regressive component of the series



Examples of ACF and PACF plots



Trend Component



Trend Component

¨ Long-term tendency
¤ Increase (upward movement) or 
¤ Decrease (downward movement)

¨ Trend can be linear or non-linear

Ex: Upward Linear Trend Ex: Quadratic Trend



Linear Trend Component

¨ For a linear trend we can write
𝑌* = 𝛽+ + 𝛽!𝑡* + 𝜀*

¨ Slope (𝛽!) and the intercept (𝛽+) are the unknown 
parameters, and 𝜀* is the error term

The error term or residual 
is the distance from point 
𝑌, to the estimate .𝑌,

.𝑌, = 𝛽- + 𝛽!𝑡,

𝜀, = 𝑌, − .𝑌,



Linear Trend Estimation and Removal

1. Model the trend: find 𝛽+ and 𝛽!

2. For each observation 𝑡 remove trend

𝑌%#!&#'%! = 𝑌! − (𝛽( + 𝛽)𝑡)



Non-linear Trend

Polynomial trend 
¨ Example: quadratic trend

𝑌4 = 𝛽- + 𝛽5𝑇4 + 𝛽6𝑇46 + 𝜀4
¨ Or any other order

Exponential trend
𝑌4 = (𝑒7!87"9#)𝜀4

¨ Can be transformed into 
linear trend
ln 𝑌4 = 𝛽- + 𝛽5𝑇4 + ln 𝜀4

Most of the time we assume a linear trend to simplify the analysis



Seasonal Component



Seasonal Component

¨ Short-term regular wave-like patterns
¨ Observed within 1 year
¨ Often monthly or quarterly



Seasonal Trend Estimation

¨ How do we estimate seasonal trend?
¨ Assume the observed series can be represented as 

𝑌# = 𝜇# + 𝑋#
where 𝐸[𝑋!] = 0

¨ For monthly seasonal data assume 12 parameters 
such as

𝜇! =

𝛽$ 𝑓𝑜𝑟 𝑡 = 1,13,25,⋯
𝛽% 𝑓𝑜𝑟 𝑡 = 2,14,26,⋯

⋮
𝛽$% 𝑓𝑜𝑟 𝑡 = 12,24,36,⋯

¨ The number of seasons may be less than 12.

Seasonal 
Means Model



Seasonal Trend Removal

1. Model the seasonal trend

𝑌) = ∑*:556 𝜇)𝐷),* where  𝜇) =

𝛽5 𝑓𝑜𝑟 𝑡 = 1,13,25,⋯
𝛽6 𝑓𝑜𝑟 𝑡 = 2,14,26,⋯

⋮
𝛽56 𝑓𝑜𝑟 𝑡 = 12,24,36,⋯

1. For each observation 𝑡 remove seasonal trend

𝑌&'(')(*+! = 𝑌! − (9
(,$

$%

𝛽(𝐷!,()



Stochastic versus deterministic trend



Series with Deterministic Trend

¨ Deterministic linear trend process
𝑌* = 𝛽+ + 𝛽!𝑡* + 𝜀*

¨ Or more generally, for a polynomial trend

𝑌" = 𝛽# + 𝛽$𝑇" + 𝛽%𝑇"% +⋯+ 𝛽&𝑇"& + 𝜀"
¨ Detrending is accomplished by running a regression 

and obtaining the series of residuals. The residuals 
will give you the detrended series

¨ That’s what we call trend-stationarity



Series with Stochastic Trend

¨ But some series have what we call difference-

stationarity

¨ Although trend-stationary and difference-stationary 
series are both “trending” over time, the stationarity 
is achieved by a distinct procedure

¨ In the case of difference-stationarity, stationarity is 
achieved by differencing the series 

¨ Sometimes we need to difference the series more 
than once



Trend-stationarity vs difference-stationarity



Stationarity Tests



Stationarity Assessment

¨ Mann-Kendall Test– monotonic trend

¨ Spearman’s Rank Correlation Test – monotonic trend

¨ Dickey-Fuller (ADF) Test – unit root

¨ Phillips-Perron (PP) Test – unit root

¨ Kitawoski-Phillips-Schmidt-Shin (KPSS) – unit root

¨ And others...



Mann-Kendall Test

¨ Commonly employed to detect deterministic trends 
in series of environmental data, climate data or 
hydrological data

¨ Cannot be applied to seasonal data 

¨ Hypothesis Test

;𝐻.: 𝑌! 𝑖𝑠 𝑖. 𝑖. 𝑑. (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
𝐻$: 𝑌! 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑡𝑟𝑒𝑛𝑑



Mann-Kendall Test

¨ Mann-Kendall statistic is

𝑆 = #
!"#

$%#

#
&"!'#

$

𝑠𝑔𝑛(𝑌& − 𝑌!)

where

𝑠𝑔𝑛 𝑌& − 𝑌! = +
1 𝑖𝑓 𝑌& − 𝑌! > 0
0 𝑖𝑓 𝑌& − 𝑌! = 0

−1 𝑖𝑓 𝑌& − 𝑌! < 0

¨ The test will check the magnitude of S and its significance 
based on the number of observations

¨ In other words, the bigger the number of observations the 
higher S will need to be 



Mann-Kendall test in R

¨ The Mann-Kendall test in R is done with the command 
MannKendall() from package “Kendall”

¨ For seasonal data you can use SeasonalMannKendall() 
from the same package



Spearman’s Rank Correlation Coefficient

¨ Spearman’s correlation coefficient is a statistical 
measure of the strength of a monotonic relationship

¨ Unlike Pearson’s correlation,                           
the relationship does not need to be linear

¨ In other words, if one variable increases so do 
does the other, it does not matter the proportion 
of the increase



Spearman’s Rank Correlation Coefficient

¨ If the correlation is close to 0, 
then there is no trend𝑌! 1

𝑌" 2
𝑌# 3
⋮ ⋮

𝑌'(" 𝑁 − 2
𝑌'(! 𝑁 − 1
𝑌' 𝑁

𝑌) 𝑇

¨ To verify a monotonic trend in your data, compute the 
spearman correlation between your data and series 𝑇

¨ The function to compute 
spearman correlation is cor() or 
the cor.test() from package 
”stats”. The latter provides the 
significance of the coefficient



Dick-Fuller Test

¨ The first work on testing for a unit root in time series 
was done by Dickey and Fuller

¨ Consider the model

𝑌# = 𝑎 + 𝜙𝑌#%! + 𝜖#
¨ The objective is to test

!
𝐻-: 𝜙 = 1 (𝑖. 𝑒. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡)
𝐻5: 𝜙 < 1 𝑖. 𝑒. 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦

¨ More general case can include more lags, the so 
called Augmented Dickey-Fuller (ADF) test

White noise series   



Dick-Fuller Test in R

¨ The ADF test in R is done with the command adf.test() 
from package “tseries”
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