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Learning Goals
S

o Introduction to Time Series Analysis (TSA)
What is TSA?
Examples

TSA Components (trend, cycle, seasonal, random)

o1 Autocorrelation Function (ACF)
o Partial Autocorrelation Function (PACF)
1 Trend and Seasonal Component

0 Stationarity Tests



- Introduction to Time Series Analysis

Meaning and definitions

Importance of TSA
Components of TSA



What is a Time Series?
e

A set of observations on a variable collected over
time
Discrete and continuous time series

Example: stock prices, interest rate, retail sales,
electric power consumption, etc

Mathematically representation: a time series is
defined by the values Y3, Y, ... of a variable Y at
times {4, 5, ...
Thus,

Y = F(t)



What is Time Series Analysis (TSA)?

In TSA, we analyze the past behavior of a
variable in order to predict its future behavior

Causes of variation of Time Series Data
Seasons, holidays, etc

Natural calamities: earthquake, epidemic, flood,
drought, etc

Political movements or changes, war, etc



Example of Time Series Data
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Example of Time Series Data
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Energy consumption time-series for meter ID 1038.
Notice the day/night rhythm.

Source: https: / /dzone.com /articles /data-chef-etl-battles-energy-consumption-time-seri



Importance of TSA
S

o Very popular tool for business forecasting

o Basis for understanding past behavior

n Can forecast future activities/planning for future

Normal @k e ¥

Use the bie Y/ 2
water ‘ s .y
Drought Energy deficit |

_C
Ve
fr®
Ak
e
CH

Drought

Store the
water

Normal




Components of TSA

- J
o Time frame: short, medium and long-term
How far can we predict?
o1 Trend

General tendency to grow or decline over a long period

Upward trend u (1)

Easiest to detect v

Maybe linear or non-linear

1 Cycle |
v (t) No trend
An up and down repetitive movement ‘ A

Repeat itself over a long period of time

Example: business cycle (prosperity, decline, depressions,
recovery)



Components of TSA (cont’d)
=

1 Seasonal Variation

An up and down repetitive movement occurring
periodically (short duration)

Factor that cause seasonal variations: climate and weather
condition or custom traditions and habits
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Components of TSA (cont’d)
S

7 Random Variations

Erratic movements that are not predictable because
they don’t follow a pattern

Example: strike, fire, war, flood, earthquake, efc..
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TSA Terms

Stationary Data - a time series variable
exhibiting no significant upward or downward
trend over time

Nonstationary Data - a time series variable
exhibiting a significant upward or downward
trend over time

Seasonal Data - a time series variable
exhibiting a repeating patterns at regular
intervals over time



- Avutocorrelation Function



Meaning of Autocorrelation Function
N

1 Recap: What is correlation?

From stats: covariance and correlation measure joint
variability of two variables.



Meaning of Autocorrelation Function
S
1 Recap: What is correlation?

Is a measure of linear dependence between two
variables

7 In TSA: What is autocorrelation?

Is a measure of dependence between two adjacent
values of the same variables

o1 The prefix auto is to convey the notion of self-
correlation, that is, correlation between variables
from the same time series



How to compute autocorrelation?
B

7 In the context of a single variable, Y; is the original
series and Y is a lagged version of the series

£ Y
Compute lag 1 autocorrelation
Y, £
= Corr(Y;,Y.
Y3 Y4 pt,s (t s)
Yy Ys
Yn-3 Yn_2
Yn-2 Yn-1
Yn-1 Yy



How to compute autocorrelation?
B

7 In the context of a single variable, Y; is the original
series and Y is a lagged version of the series

Yi Y

¢ Y,

Ys Ys

Y, Ye
Yn_3 Yn_1 Compute lag 2 autocorrelation
-2 & prs = Corr(¥,,¥.)
Yy_1



Main Conclusion
"

Avutocovariance and autocorrelation
function give information about the
dependence structure of a time series



- Stationary Process



Stationary Process
=

o The basic idea of stationarity is that the probability
laws that govern the behavior of the process do not
change over time

The distribution of _ The distribution of
observations at these points observations at these points
- A ) P A “~N\
® oo ® ° - °

Time



Consequences of Stationarity

4
1 Distribution of Y; is the same of Y; _; for all t and k

o Then,

E(Y;) = E(Y;_) for all t and k so the mean function
is constant for all time

Var(Y;) = Var(Y;_) for all t and k so the variance
is also constant over time

7 And what happens with the autocovariance function?

*adapted from Ch. 2 of Cryer and Shan



Consequences of Stationarity (cont’d)
-1

o |If the process is stationary, then

yt,S — COU(Yt, YS) — COU(Yt_k, YS—k)

Fork=s — Cov(Y;Y;) = Cov(Yi_g, Yp)

Fork=t - Cov(Y,,Y;) = Cov(Yy Ys_;)

Thus, Yts = COU(Yo' Y|t—S|) = Yo,|t—s]

7 In other words, the covariance between Y; and Y
depends only on the time difference |t — s| and not on
the actual times t and s

*adapted from Ch. 2 of Cryer and Shan



White Noise Series

1 Example of a stationary process: white noise series

o1 The white noise series is a sequence of independent,
identically distributed (i.i.d.) random variables {e;}

0 {es} is a stationary process, then

He = E(er)
_(var(e) fork=0
Vie = 1 0 fork #0
_ (1 fork =20
P = 1 0 fork +#0

71 In time series modeling we usually assume that the white
noise process has mean zero and Var(e;) = o2

*adapted from Ch. 2 of Cryer and Shan



- Partial Autocorrelation Function



Partial Autocorrelation Function

Recap: The ACF of a stationary process Y; at lag h
Pri-n = Corr(Y,Yi_p)

measures the linear dependency among the process
variables Y; and Y;_j,.

But the dependency structure among the

YtJ Yt—1; Yt—Zi Yt—h+2' Yt—h+1' Yt—h

also plays an important role on the value of the ACF.



Partial Autocorrelation Function (cont’d)

#y
L

Imagine if you could remove the influence
of all these intermediate variables...

&

You would have only the directly correlation

between Y; and Y;_p,

<

That's the so called partial auvtocorrelation function
(PACF)



Partial Autocorrelation Function (cont’d)

-
The PACF is a little more difficult to compute

We will talk about that later when we discuss the
Yule Walker equations

In summary:

The ACF and PACF measure the temporal dependency
of a stochastic process

You will always build the ACF and PACF before fitting a
model to a stochastic process

The ACF and PACF give us information about the
of the series



Examples of ACF and PACF plots
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- Trend Component



Trend Component
-1

1 Long-term tendency
Increase (upward movement) or

Decrease (downward movement)

1 Trend can be linear or non-linear

Ex: Upward Linear Trend Ex: Quadratic Trend




Linear Trend Component
-1

7 For a linear trend we can write
Y; = Bo + f1t; + &
0 Slope (f1) and the intercept (By) are the unknown
parameters, and &; is the error term

Y; = Bo + But;

The error term or residual

is the distance from point
Y; to the estimate Y;

=Y —Y




Linear Trend Estimation and Removal

S
1. Model the trend: find 5, and [5;

2. For each observation t remove trend

Ydetrendt =Y — (Bo + B11)



Non-linear Trend
e

Polynomial trend Exponential trend

— +561T\ ¢,
0 Example: quadratic trend Vi = (ePorFili)g
Y; = Bo + BuT; + BT + & 71 Can be transformed into

1 Or any other order linear trend
g lnYi=ﬁ0+ﬁ1Ti+ln€i

1000

600

0 200
l

60

Most of the time we assume a linear trend to simplify the analysis




- Seasonal Component



Seasonal Component
—

-1 Short-term regular wave-like patterns -
1 Observed within 1 year

-1 Often monthly or quarterly
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Seasonal Trend Estimation

S 1N
1 How do we estimate seasonal trend?

1 Assume the observed series can be represented as
Yo = + X
where E[X;]| = 0

0 For monthly seasonal data assume 12 parameters
such as
f ,31 fOT t =1,13,25, - Seasonal
B, fort=21426, Means Model
He = < E
\'812 fort = 12,2436,

1 The number of seasons may be less than 12.



Seasonal Trend Removal
1

1. Model the seasonal trend

(B, fort=11325,

ort = 2,14,26, ---
Yy = Y521 ueDy s where pe = 3 N :

Bz fort=122436,-

1. For each observation t remove seasonal trend

12
Ydeseasont =1 — (Z BsD¢s)
s=1






Series with Deterministic Trend
-

Deterministic linear trend process
Y; = Bo + it + &

Or more generally, for a polynomial trend

— 2 n

Yi = Po + 1T + BT + -+ BT + &

Detrending is accomplished by running a regression
and obtaining the series of residuals. The residuals
will give you the detrended series

That’s what we call



Series with Stochastic Trend
e

But some series have what we call

Although trend-stationary and difference-stationary
series are both “trending” over time, the stationarity
is achieved by a

In the case of difference-stationarity, stationarity is
achieved by differencing the series

Sometimes we need to difference the series more

than once



Trend-stationarity vs difference-stationarity
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- Stationarity Tests



Stationarity Assessment
S

Mann-Kendall Test— monotonic trend

Spearman’s Rank Correlation Test — monotonic trend

Dickey-Fuller (ADF) Test — unit root
Phillips-Perron (PP) Test — unit root

Kitawoski-Phillips-Schmidt-Shin (KPSS) — unit root

And others...



Mann-Kendall Test
S

1 Commonly employed to detect deterministic trends
in series of environmental datq, climate data or

hydrological data
1 Cannot be applied to seasonal data

0 Hypothesis Test

Hy: Y, is i.i.d.(stationary)
H;: Y; follow atrend



Mann-Kendall Test

1 Mann-Kendall s’rq’ris’ric is

S = z z sgn(Y; — 1)

=1 j=k+1
where
(1 if V-V >0
Sgn(Yj—Yk)—< 0 if V-V =
~1 if Y=Y, <0

71 The test will check the magnitude of S and its significance
based on the number of observations

01 In other words, the bigger the number of observations the
higher S will need to be



Mann-Kendall test in R
S

- The Mann-Kendall test in R is done with the command
MannKendall() from package “Kendall”

Description

This is a test for monotonic trend in a time series z[t] based on the Kendall rank correlation of z[t] and t.
Usage
MannKendall(x)

Arguments

x a vector of data, often a time series

Details

The test was suggested by Mann (1945) and has been extensively used with environmental time series (Hipel and
McLeod, 2005). For autocorrelated time series, the block bootstrap may be used to obtain an improved signficance test.

71 For seasonal data you can use SeasonalMannKendall()
from the same package



Spearman’s Rank Correlation Coefficient
_

0 Spearman’s correlation coefficient is a statistical
measure of the strength of a monotonic relationship

y Y y Spearman correlation=1

N

10 Pearson correlation=0.88

(o]

? o
M@

0 W@ﬁm
X X X >

Monotonically increasing ~ Monotonically decreasing Not monotonic -5 go
w
®

-10

o Unlike Pearson’s correlation,

=15

00 02 04 06 08 1.0

the relationship does not need to be linear

7 In other words, if one variable increases so do
does the other, it does not matter the proportion
of the increase



Spearman’s Rank Correlation Coefficient
-~

To verify a monotonic trend in your data, compute the
spearman correlation between your data and series T

Y, T o
If the correlation is close to O,
then there is no trend
Y, 2
: The function to compute
Yo, N2 spearman correlation is cor() or

Vo, N—1 the cor.test() from package
"stats”. The latter provides the
significance of the coefficient



Dick-Fuller Test
—

o1 The first work on testing for a unit root in time series

was done by Dickey and Fuller

White noise series

1 Consider the model / —

Y, =a+ Y, +€ -
=1 The objective is to test S

Hy: ¢ =1 (i.e. containaunitroot) =~~~ """ """
H: ¢ <1 (i.e. isstationary)

1 More general case can include more lags, the so

called Augmented Dickey-Fuller (ADF) test



Dick-Fuller Test in R

1
71 The ADF test in R is done with the command adf.test()
from package “tseries”

Description
Computes the Augmented Dickey-Fuller test for the null that x has a unit root.
Usage

adf.test(x, alternative = c("stationary", "explosive"),
k = trunc((length(x)-1)"(1/3)))

Arguments

X a numeric vector or time series.

alternative indicates the alternative hypothesis and must be one of "stationary" (default) or "explosive".
You can specify just the initial letter.

k the lag order to calculate the test statistic.
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