

ENVIRONMENTAL DATA ANALYTICS: M7 – GENERALIZED LINEAR MODELS

Spring 2024

Nicholas School of the Environment - Duke University

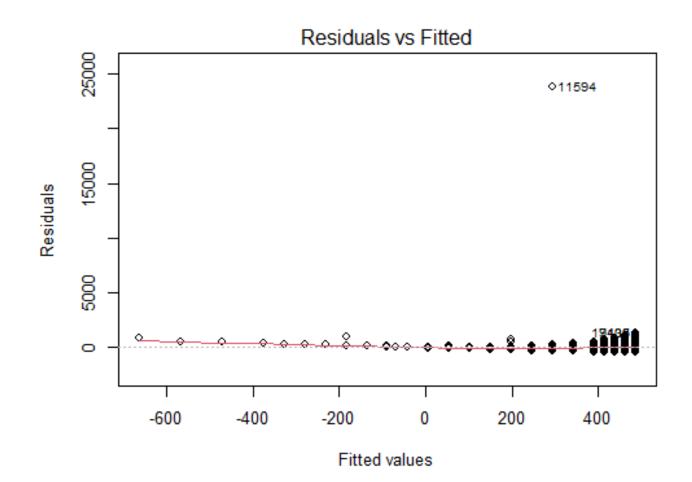
M6.1- Basics of GLMs

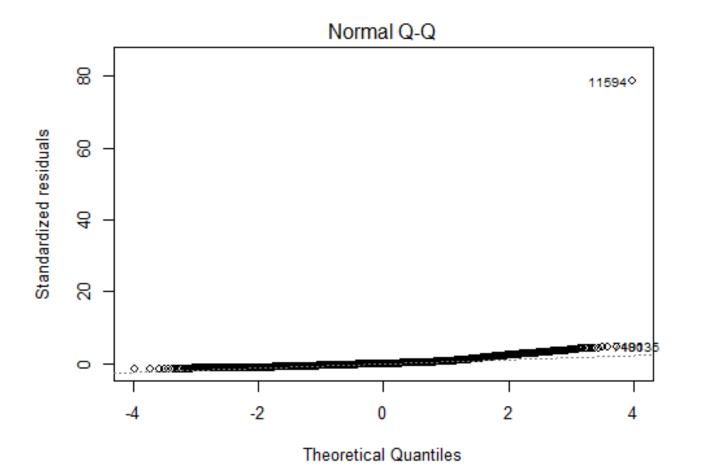
- What are GLMs?
- Hypothesis testing
- Simple Linear Regression ("Im")
 - Principles
 - Running in R
 - Interpreting results: stats and plots

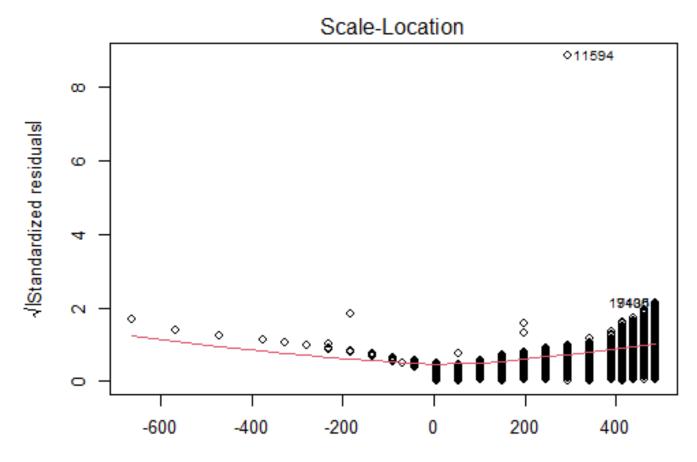
Terminology

Term	Use
Response	Variable we are trying to predict ("dependent variable" or "target")
Independent variable	A variable used to predict the response ("predictor", "feature")
Record	Vector of predictor(s) and outcome value from an observation
Intercept	Predicted value when $X = 0$
Regression Coefficient	Slope of the regression line
Fitted values	Estimates of Y obtained from the regression line (aka "prediction")
Residuals	Difference between observed and fitted values (errors)
Least Squares	Method used to find line that minimizes squared sum of residuals

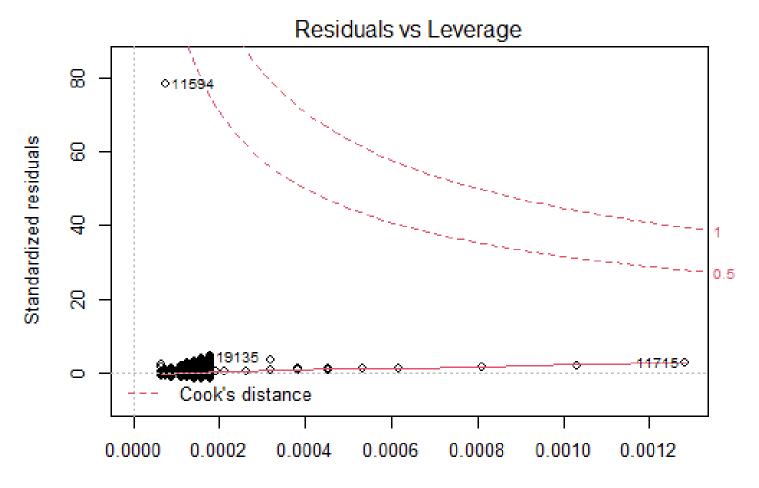
General workflow


- View data: Scatterplot of Y vs X
 - Can you see a trend?
 - Transform an axis?
- Create the linear model
 - Finds the best fit line (ordinary least squares method)
 - Assumes residuals are normal; sensitive to outliers
 - Assumes causation


Examine the model summary & plots


Interpreting results

```
> summary(irradiance.regression)
```


```
call:
lm(formula = irradianceWater ~ depth, data = PeterPaul.chem.nutrients)
Residuals:
   Min 10 Median 30 Max
-456.67 -142.62 -39.85 91.13 1375.43
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 484.5698 3.1509 153.8 <2e-16 ***
           -95.6492 0.8947 -106.9 <2e-16 ***
depth
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 235.3 on 15445 degrees of freedom
Multiple R-squared: 0.4253, Adjusted R-squared: 0.4252
F-statistic: 1.143e+04 on 1 and 15445 DF, p-value: < 2.2e-16
```


Fitted values

Leverage

Multiple Linear Regression

- Many independent variables to predict "y"
- Correlation matrices
- □ Issue of overfitting...
- Akaike's Information Criterion (AIC)

Multiple Linear Regression: Workflow

- Generate linear model (`lm`)
- Apply `step()` function to resulting model
 - Note initial AIC
 - Note change in AIC with removal (addition) of single terms
 - If AIC decreases with removal, then remove the term(s) and re-run `lm`
 - Repeat: `step()` will suggest final linear regression model
- Run suggested model and report findings: Does R2 increase?

M6.2 – ANOVA

- Predicting Y from categorical variables
- Terminology

Terminology

- Factor: A variable used to group data, suspected to explain variability in another [response] variable.
 - Example: Land cover from which a litter sample was collected
- Levels: The different values found in the factor
 Example: *Forest, Wetland, Shrub*

Balanced Design:

All *levels* have equal number of observations

ANOVA: Assumptions

- Populations are normally distributed
- Variances are equal
- Observations are independent

ANOVA: Litter biomass across sites

- Group data by factor (plot, date, land cover class)
- Compute sum of dry mass across combos of factors
- Examine summaries
 - Value ranges and variance, factor levels
- Assess assumptions
 - Population sizes equal? No...
 - **D** Normality? Shapiro test \rightarrow Only two sites..
 - Normality? QQ Plot \rightarrow Not normal
 - **\square** Equal variance? Bartlett test \rightarrow Not normal
- Compute ANOVA: `AOV`

ANOVA: Results

"aov"	<pre>> Litter.Totals.anova <- aov(data = Litter.Totals, dryMass ~ plotID) > summary(Litter.Totals.anova)</pre>
"lm"	Call: lm(formula = dryMass ~ plotID, data = Litter.Totals) Residuals:
	Min 1Q Median 3Q Max -18.586 -5.419 -1.529 1.964 59.821 Coefficients:
	Estimate Std. Error t value Pr(> t) (Intercept) 15.680 2.746 5.711 4.08e-08 ***
	plotIDNIW0_041 1.299 4.061 0.320 0.749396
	plotIDNIW0_046 -5.724 3.996 -1.432 0.153580 plotIDNIW0_047 -11.204 4.134 -2.710 0.007315 **
	plotIDNIW0_051 -10.011 4.061 -2.465 0.014546 *
	plotIDNIW0_057 5.006 3.937 1.272 0.205013
	plotIDNIW0_058 -13.282 3.883 -3.420 0.000760 ***
	plotIDNIWO_061 -2.494 3.937 -0.633 0.527140 plotIDNIWO_062 -12.632 3.883 -3.253 0.001342 **
	plotIDNIW0_063 -13.286 3.937 -3.375 0.000888 ***
	plotIDNIW0_064 -7.664 3.883 -1.974 0.049805 *
	plotIDNIW0_067 -3.114 4.061 -0.767 0.444110
	 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
	Residual standard error: 11.97 on 198 degrees of freedom Multiple R-squared: 0.211, Adjusted R-squared: 0.1671 F-statistic: 4.813 on 11 and 198 DF, p-value: 1.452e-06

ANOVA: Post Hoc tests

- If means are found not to be the same, which are different?
- $\hfill\square$ Tukey HSD \rightarrow Compares all pairwise combinations

Computes diff o	\$groups			and	upper values
		dryMass	groups		
Finds groups	NIW0_057	20.685833	a		
	NIW0_041	16.979063	ab		
	NIWO_040	15.680000	abc		
	NIW0_061	13.186111	abcd		
	NIWO_067	12.565938	abcd		
	NIWO_046	9.956176	abcd		
	NIWO_064	8.015789	abcd		
	NIW0_051	5.668750	bcd		
	NIWO_047	4.476333	bcd		
	NIW0_062	3.047632	cd		
	NIW0_058	2.398421	d		
	NIW0_063	2.393889	d		

ANOVA: Post Hoc tests

Two-way ANOVA

Do samples have different mean dry mass among groupings by functional group and NLCD class?

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
functionalGroup	7	6193	884.7	71.540	< 2e-16	***
nlcdClass	2	223	111.7	9.033	0.000125	***
Residuals	1682	20800	12.4			

□ Interactive effects...

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
functionalGroup	7	6193	884.7	72.445	< 2e-16	sie sie sie
nlcdClass	2	223	111.7	9.147	0.000112	sie sie sie
functionalGroup:nlcdClass	14	431	30.8	2.521	0.001444	sie sie
Residuals	1668	20369	12.2			

Two-way ANOVA: Post Hoc

Tukey's HSD

- Create interaction list (all combinations):
- Run ANOVA on that...
- Run HSD.test on ANOVA results
- Find functional groups...

	dryMass	groups
Needles.evergreenForest	7.431888889	a
Needles.grasslandHerbaceous	5.178888889	b
Needles.shrubScrub	4.406288660	bc
Mixed.shrubScrub	2.266184211	cd
Twigs/branches.evergreenForest	2.079294118	d
Mixed.evergreenForest	1.624375000	d
Woody material.evergreenForest	1.203936170	d
Mixed.grasslandHerbaceous	1.129000000	d
Twigs/branches.grasslandHerbaceous	0.949900000	d
Twigs/branches.shrubScrub	0.479583333	d
Woody material.shrubScrub	0.127968750	d
Flowers.evergreenForest	0.119625000	d
Other.grasslandHerbaceous	0.096666667	d
Other.evergreenForest	0.084807692	d
Seeds.evergreenForest	0.073461538	d
Other.shrubScrub	0.066576087	d
Leaves.shrubScrub	0.058936170	d
Woody material.grasslandHerbaceous	0.048877551	d
Leaves.grasslandHerbaceous	0.030471698	d
Seeds.shrubScrub	0.028777778	d
Leaves.evergreenForest	0.016025641	d
Flowers.shrubScrub	0.015505618	d
Flowers.grasslandHerbaceous	0.005425532	d
Seeds.grasslandHerbaceous	0.005416667	d

dryMass group

M6.3 – T-test

- T-tests:
 - 1-sample & 2-sample;
 - 1-sided & 2-sided

Question

On average, do daily ozone values in our data meet the air quality standards of 50 ppm?

One Sample T-Test

Tests for different response among samples in two groups...

One-sample T-test: Is the mean equal to **50 ppm**

H_o: The difference the sample mean and the value is zero

 H_a: The difference is NOT zero (two-sided); The difference is GREATER THAN zero (one-sided); The difference is LESS THAN zero (one-sided);

Are Ozone levels below the threshold for "good" AQI index (0-50)?

T-test: Workflow

State the hypothesis:

- H₀: Mean ozone is >= 50ppm (*one-sided*)
- H_a: Mean ozone is < than 500ppm</p>

Examine the data:

- What is the reported mean of our sample?
- Test for normality (Shapiro-Wilks; histogram; QQplot)
- T-test (one-tail?)
- Summarize results
 - Put result into words
 - Reference the test used, the test-statistic, and the p-value

1-sample, 1-sided T-test: Output

```
One Sample t-test
data: EPAair$Ozone
t = -57.98, df = 6829, p-value < 2.2e-16
alternative hypothesis: true mean is less than 50
95 percent confidence interval:
     -Inf 41.13416
sample estimates:
mean of x
40.87526
```

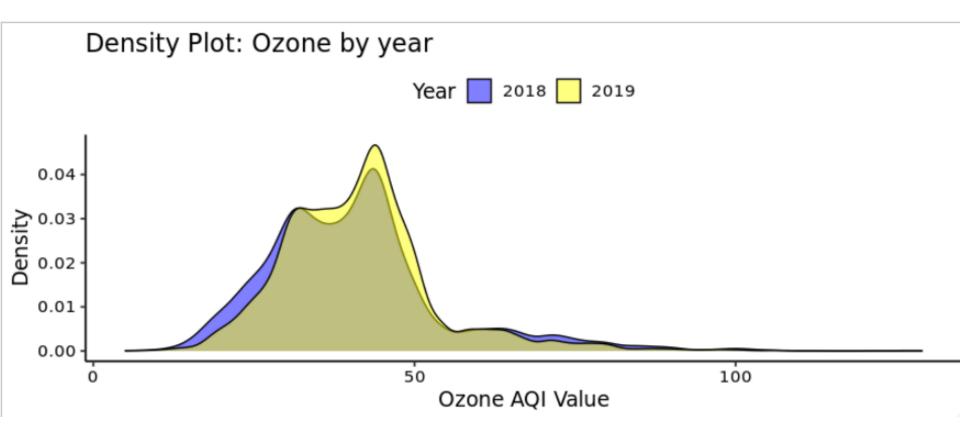
Two-Sample T-Tests

Do two samples have different means?

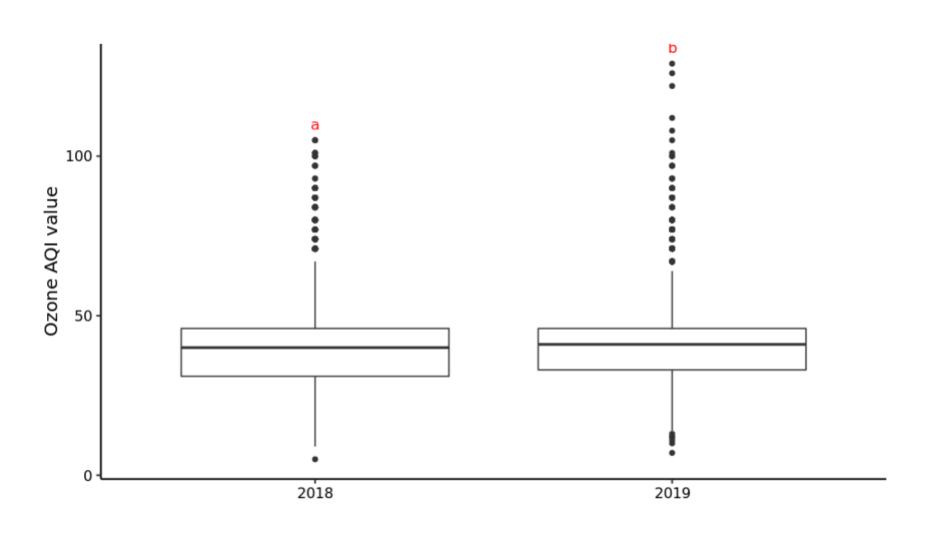
H₀: Samples have the same mean
 H_a: Samples have different means

Assumptions:

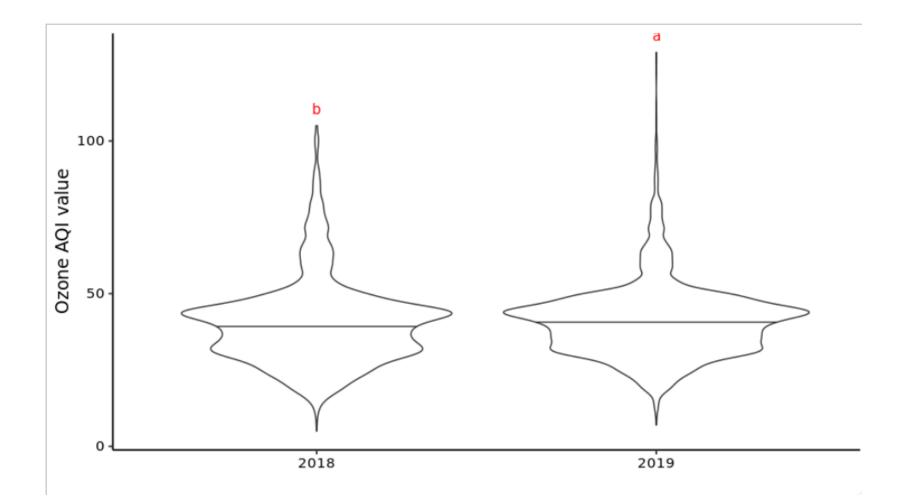
- Normal distributions
- Similar variances


2-sample T-test result

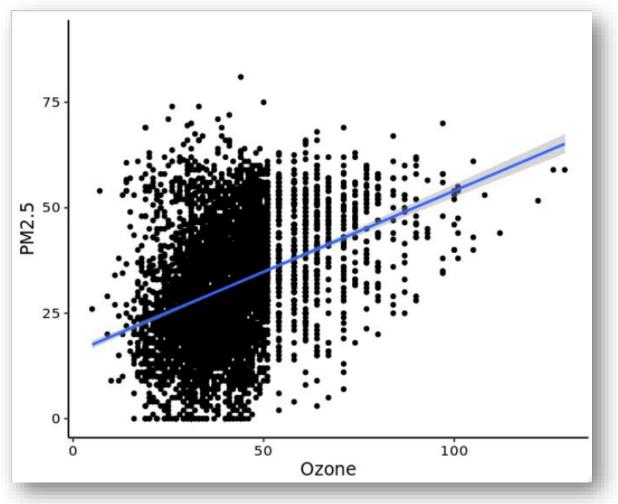
As T-test	
Welch Two Sample t-test	
<pre>data: EPAair\$Ozone by EPAair\$Year t = -2.6642, df = 6467.7, p-value = 0.0 alternative hypothesis: true difference 95 percent confidence interval: -1.4670426 -0.2232942 sample estimates:</pre>	007736 in means between group 2018 and group 2019 is not equal to 0
mean in group 2018 mean in group 2019 40.43065 41.27581	Call: lm(formula = EPAair\$Ozone ~ EPAair\$Year)
□ As linear model→	<pre>Residuals: Min 10 Median 30 Max -35.431 -8.431 -0.431 5.569 87.724 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -1665.1192 635.9203 -2.618 0.00885 ** EPAair\$Year 0.8452 0.3150 2.683 0.00732 ** Signif. codes: 0 (**** 0.001 (*** 0.01 (** 0.05 (.* 0.1 (* 1 Residual standard error: 13 on 6828 degrees of freedom (2146 observations deleted due to missingness) Multiple R-squared: 0.001053, Adjusted R-cquared: 0.009066 F-statistic: 7.197 on 1 and 6828 DF,</pre>


M6.3 - Exercises

- Exercises...
 - Linear regression


Exercise 2: Density plot

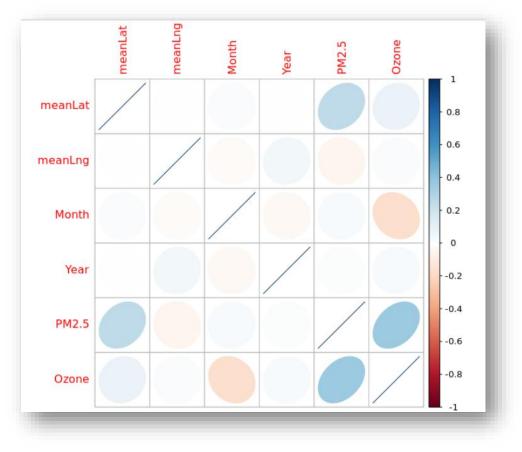
Exercise 2: Box plot



Exercise 2: Violin plot

Exercise 3&4: Linear Regression

□ Can we predict PM2.5 from Ozone?


Exercise 3&4

Call: lm(formula = PM2.5 ~ Ozone, data = EPAair) Residuals: Min 10 Median 30 Max -37.204 -8.931 -0.613 8.463 48.473 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 15.63824 0.55556 28.15 <2e-16 *** Ozone 0.38384 0.01298 29.58 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 13.06 on 5774 degrees of freedom (3200 observations deleted due to missingness) Multiple R-squared: 0.1316, Adjusted R-squared: 0.1314 F-statistic: 874.9 on 1 and 5774 DF, p-value: < 2.2e-16

Exercise 5: Correlation matrix

□ Tip:

- Subset dataframe to include numeric columns only
- Remove NAs

Exercise 6: Stepwise AIC

PM2.5 ~

Ozone + Year + Month + SITE_LATITUDE + SITE_LONGITUDE

All Terms

Residual standard error: 12.6 on 5770 degrees of freedom (3200 observations deleted due to missingness) Multiple R-squared: 0.1927, Adjusted R-squared: 0.192 F-statistic: 275.5 on 5 and 5770 DF, p-value: < 2.2e-16</p>

Trimmed...

Residual standard error: 12.6 on 5771 degrees of freedom (3200 observations deleted due to missingness) Multiple R-squared: 0.1926, Adjusted R-squared: 0.192 F-statistic: 344.2 on 4 and 5771 DF, p-value: < 2.2e-16</pre>