2: Reproducibility and Coding Basics

Environmental Data Analytics | John Fay and Luana Lima | Developed by Kateri Salk

Spring 2022

Objectives

1. Discuss the benefits and approach for reproducible data analysis
2. Perform simple operations using R coding syntax
3. Call and create functions in R

Reproducible Data Analysis
Fundamentals of reproducibility

Reproducibility: when someone else (e.g., future self) can obtain the same outcomes from the same dataset
and analysis

e Raw data are always separate from processed data

e Link data transformations with a reproducible pipeline

o Raw datasets NEVER changed

 Cleaning/transformations done through coding, not by editing within Excel
e Edits documented by well-commented code

o Majority of time spent in the data processing phase (clean, wrangle)

Rules and Conventions

o Data stored in nonproprietary software (e.g., .csv, .md, .txt)
e File names in ASCII text

e No spaces!

o Consistent file naming conventions

e Store data, code, and output in separate folders

Version Control

This semester, we will incorporate the fundamentals of version control, the process by which all changes to
code, text, and files are tracked. In this manner, we’re also able to maintain data and information to support
collaborative projects, but to also make sure your analyses are preserved.

Before coming to class, you were asked to create a GitHub.com account. GitHub is the web hosting platform
for maintaining our Git repositories. Our version control system for the purposes of this course is Git.

RStudio Basics

Welcome to the RStudio interface. When you open RStudio, you will see four panels:

Source Code Editor (top left) includes a tab structure to pull up and edit R scripts and markdown
documents.

Console (bottom left) interacts with R processes. R code is run here. There is also a tab here called
Terminal which will allow you to access git functionality.

Workspace Browser (top right) holds the global environment that is populated by analyses run in each
R session. There is also a history tab and a git tab.

Notebook (bottom right) holds tabs for files, plots, packages, and help. You will interact with each of
these functionalities, and we will explain each as they come up.

More on the functionality of each of these panels as we move through this lesson.

RMarkdown documents

You are currently viewing an R Markdown document. This type of file includes text chunks and R code
chunks that can be viewed together. R Markdown documents can also be “knitted” into a PDF or html
format (more on this later).

An R script file is similar to an R Markdown document, except it only includes R code. Any text that is
included in an R script that it not intended to be run as R code must be “commented out” so that R does
not interpret the text as code. We will practice with R scripts later.

You may also choose to type or paste R code directly into the console. This is not a recommended method,
as it undermines the goals of reproducibility (code is not saved). However, typing directly into the console
can be useful if you need to do something that is strictly temporary (e.g., look at a summary of a dataset or
determine the class of a variable)

R Coding basics

R as a calculator
Below is a chunk of R code. You can run R code in several ways:

o Place your cursor on the line of R code that you want to run, then press control + enter (PC) or
command + enter (Mac). Your R code should appear in the console, followed by any output generated
by the code.

o Highlight line(s) of R code, then press control + enter (PC) or command + enter (Mac). Your R
code should appear in the console, followed by any output generated by the code. This is a good option
if you want to run multiple lines of code at once.

Basic math
1 +1

[1] 2
1 -1
[1] O
2 x 2

[1] 4
1/ 2

[1] 0.5
1/ 200 * 30

[1] 0.15
5+ 2 % 3

[1] 11
(5 +2) 3

[1]1 21

Common terms
sqrt (25)

[1] 5
sin(3)

[1] 0.14112
pi
[1] 3.141593

Summary statistics
mean(5, 4, 6, 4, 6)
[1] 5

median(5, 4, 6, 4, 6)

[1] &

Condttional statements
4 > 5

[1] FALSE
4 <5

[1] TRUE
4 1= 5

#i# [1] TRUE
==

[1] FALSE

Objects

You can create R objects with an assignment statement. The indicator for an assignment is the <- symbol.
A good way to think about the meaning of an assignment statement is “object name (lefthand side) gets
value (righthand side).”

A quick note: in many situations, a = sign will substitute for a <-. Resist this temptation! This will be
confusing later, when = means something else.

x <- 3%4

Now, call up the object x. Notice that x has also just shown up in your Environment tab.
X

[1] 12

Naming

R objects can be named with a combination of letters, numbers, underscore (_) and period (.). The best R
object names are informative. Resist the temptation to call your R object something convenient, like “a”,
“b”, and so on. Calling your R object something specific means that you can call up that object later and
have an idea of what it contains, with less need for specific context.

Informative names are the first illustration of a common data management recommendation: take the time
to use best management practices at the outset, and it will save you time in the long term.

Importantly, you may never call an R object “data”. This word is reserved for a specific function and may
not be assigned as a name. To work around this, many people call their R objects “dat”, which is another
example of a less-than-ideal data management practice because it is not informative.

Run the first line of code below. Then, type in “long” and press tab. What happens?

What happens if there is a typo in your code? Type the following in the R window: Long_name_ for_illustration
longnameforillustration

long_name_for_illustration <- 11

Comments

Within your R code, it is often useful to include notes about your workflow. So that these aren’t interpreted
by the software as code, precede the notes with a # sign. Your editor will display this comment as a different
color to indicate it will not be run in the console. Comments can be placed on their own lines or at the end
of a line of code.

I am demonstrating a comment here.
1+ 1 # This is a simple math problem

[1] 2

Functions

R functions are the major tool used in R. Functions can do virtually unlimited things within the R universe,
but each function requires specific inputs that are provided under specific syntax. We will start with a simple
function that is built into R, seq

seq(1, 10)

[1] 1 2 3 4 5 6 7 8 910
ten_sequence <- seq(l, 10)
ten_sequence

[1] 1 2 3 4 5 6 7 8 9 10
seq(1l, 10, 2) # from, to, by

[11 13579

The basic form of a function is functionname (), and the packages we will use in this class will use these
basic forms. However, there may be situations when you will want to create your own function. Below is a
description of how to write functions through the metaphor of creating a recipe (credit: @IsabellaGhement
on Twitter).

Writing a function is like writing a recipe. Your function will need a recipe name (functionname). Your recipe
ingredients will go inside the parentheses. The recipe steps and end product go inside the curly brackets.

functionname <- function(){

}

A single ingredient recipe:

Write the recipe

recipel <- function(x){
mix <- x*2
return(mix)

}

Bake the recipe
simplemeal <- recipel(5)

Serve the recipe
simplemeal

[1] 10

Two single ingredient recipes, baked at the same time:

recipe2 <- function(x){
mixl <- x*2
mix2 <- x/2
return(list(mixl, #comma indicates we continue onto the next line
mix2))
¥

doublesimplemeal <- recipe2(6)
doublesimplemeal

$mixi

[1] 12
##

$mix2

[1] 3

Two double ingredient recipes, baked at the same time:

recipe3 <- function(x, f){
mixl <- xx*f
mix2 <- x/f
return(list(mixl, #comma indicates we continue onto the next line
mix2))
}

doublecomplexmeal <- recipe3(By 2)
doublecomplexmeal

$mixi
[1] 10
##

$mix2
[1] 2.5

doublecomplexmeal$mixl

[1] 10

Make a recipe based on the ingredients you have

reciped4 <- function(x) {
if(x < 3) {

X*2

else {
x/2
}
}

recipeb <- function(x) {
if(x < 3) {
x*2
}
else if (x > 3) {
x/2
¥
else {
X
}
}

meal <- recipe4(4); meal

[1] 2

meal2 <- recipe4(2); meal2

[1] 4

meal3 <- recipeb5(3); meal3

[1] 3

recipe6 <- function(x){
ifelse(x<3, x*2, x/2) #log_exp, <f TRUE, 4if FALSE

}

meald <- recipe6(4); meal4d

[1]1 2

meal5 <- recipe6(2); mealb

[1] 4

Getting help within R

In many ways, the help functionality in R is limited by the fact that you need to have a good understanding
of specific functions for the help to be useful. Google and Stack Overflow are often more helpful than the
help within R. We will practice those skills later.

For now, here are some ways to access the help tools in R:

e Within your R chunks in your editor, type in ??function. This will bring up the help pane in the
notebook, which you can then navigate through to find what you need.

o In the console, type in help(function). This will bring up the help pane in the notebook at the page
for that function.

o Navigate to the help pane in the notebook and type the function into the search bar.

?7seq

Tips and Tricks

o Spaces (generally) don’t matter. One notable exception is that spaces within quotation marks do
matter.

o (Case matters
e Parentheses and quotation marks appear in pairs when typed into RStudio.
e When typing long names, use the tab key partway through the name to generate autocomplete options.

e In the upper right corner of the editor is a button with multiple horizontal lines. Clicking this button
will bring up the outline of the document. Headings in the outline are determined by how you’ve defined
them in the document.

R Markdown and R script files can be organized into sections. Sections can be expanded or collapsed as
desired via three options:

e On the lefthand side of the editor, you will see arrows to the right of the line numbers. Clicking on
these arrows will collapse or expand the section. When a section is collapsed, a double-arrow box will
appear within the script. You can also click on this box directly to expand the section.

e Navigating from the menu bar, the Edit menu will bring you to the option “Folding”. This option can
be especially helpful when you first open a file and decide if you want to navigate between sections or
run sections sequentially.

o Highlight a section of text, and then press option + command + L (Mac) or alt + L (Windows). Add
the shift key to this combination to expand, or click the box.

	Objectives
	Reproducible Data Analysis
	Fundamentals of reproducibility
	Rules and Conventions
	Version Control

	RStudio Basics
	RMarkdown documents
	R Coding basics
	R as a calculator
	Objects
	Naming
	Comments
	Functions
	Getting help within R

	Tips and Tricks

